If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-8)-(8x^2-6x+18)=(6x)-(64-6x+18)
We move all terms to the left:
(2x-8)-(8x^2-6x+18)-((6x)-(64-6x+18))=0
We add all the numbers together, and all the variables
(2x-8)-(8x^2-6x+18)-(6x-(-6x+82))=0
We get rid of parentheses
-8x^2+2x+6x-(6x-(-6x+82))-8-18=0
We calculate terms in parentheses: -(6x-(-6x+82)), so:We add all the numbers together, and all the variables
6x-(-6x+82)
We get rid of parentheses
6x+6x-82
We add all the numbers together, and all the variables
12x-82
Back to the equation:
-(12x-82)
-8x^2+8x-(12x-82)-26=0
We get rid of parentheses
-8x^2+8x-12x+82-26=0
We add all the numbers together, and all the variables
-8x^2-4x+56=0
a = -8; b = -4; c = +56;
Δ = b2-4ac
Δ = -42-4·(-8)·56
Δ = 1808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1808}=\sqrt{16*113}=\sqrt{16}*\sqrt{113}=4\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{113}}{2*-8}=\frac{4-4\sqrt{113}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{113}}{2*-8}=\frac{4+4\sqrt{113}}{-16} $
| -18+3(2x+6)=5x+12 | | x+2.3=4.8 | | 3x+23+7x-13=180 | | x+½=4½ | | 3x-21+4x+24/24=0 | | N-5-3=-2n+1 | | 2p=7p-15 | | 8x–7=17 | | 6(x-20=54 | | 2(2x+5)+6=9x-10 | | 4v-10=5v-13 | | x-3=49-7/6x | | 3t=t+56 | | 5y+4=15+6y | | 24=7w-w | | −35=7t | | -2n+3n=5n-3n-5 | | 4y+3y=6y+18 | | -4x-17=60 | | 2-(x-5)+3=-10+3x+20 | | 4y-13=7+1/2 | | 2-(x-5)+3=-10+3x+20 | | 3y-7=5y+21 | | 4+16=2v | | 9x+45=15x | | (6+x)1/2=15 | | 21y-1=12.2 | | v+66=4v | | (12-r)0.75=-6 | | -12-n=2n+3 | | 7x-7-4x+6=0 | | 3s=s+48 |